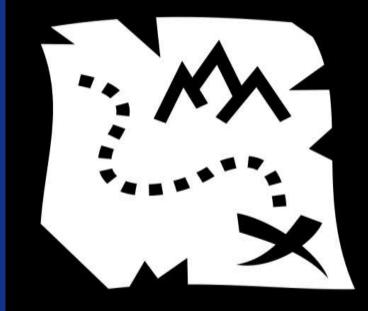


How Vaccines are Made And What's In them


Christopher J Harrison MD, FAAP, FPIDS Pediatric Infectious Diseases Children's Mercy Hospital – Kansas City

Road map

- What's in that Vaccine there?
 - Antigens / epitopes
 - Maybe adjuvant
 - Minimal preservative use
 - Excipients, solubilizers

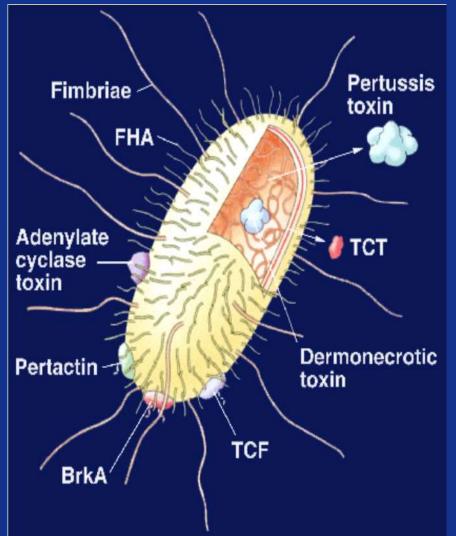
- Processes for development and safety monitoring
 - 4 Phase to get FDA approval
 - Vaccine safety
 - During 4 phases
 - Post marketing surveillance
 - VAERS, CISA
- Local Vaccine Uptake Tidbit

Pertussis Containing Combo Vaccine 1

Pediarix® (GlaxoSmithKline)

- Diphtheria toxoid 15 Lf, tetanus toxoid 5 Lf
- IPV 40DU Type 1, 8 DU Type 2, and 32DU Type 3
- aP antigens = 10 μg detoxified PT, 5 μg FHA, 3 μg pertactin, and 5 μg FIM 2 and 3
- 10 μg HBsAg
- Aluminum salt adjuvant (< 0.85 mg aluminum)
- Neomycin (≤0.05 ng) and polymyxin B (≤0.01 ng) IPV manufacturing process
- Residual formaldehyde ≤100 µg; solubilizer ≤100 µg
- NaCl 4.5 mg
- ≤5% yeast protein HBsAg manufacturing

Pertussis Containing Combo Vaccine 2


Pentacel® (Sanofi Pasteur)

- Diphtheria toxoid 15 Lf, tetanus toxoid 5 Lf
- IPV- 40DU Type 1, 8 DU Type 2, and 32DU Type 3
- aP Ags 20µg detoxed PT, 20µg FHA, 3µg pertactin, 5µg FIM
- PRP-T = Hib PRP 10µg covalent to tetanus toxoid 24µg
- AlPO₄ adjuvant (0.33 mg aluminum)
- Neomycin <4 pg, and polymyxin B <4 pg
- Residual formaldehyde ≤5 µg, glutaraldehyde <50 ng, and bovine serum albumin ≤50 ng
- Sucrose 42.5 mg and solubilizer ~ 10 PPM
- 2-phenoxyethanol (non-preservative) 3.3 mg (0.6% v/v)

Pertussis and Antigen Targets

- Pertussis toxin (PT), also known as lymphocytosis- promoting factor (LPF)
- Filamentous hemagglutinin (FHA)
- Pertactin (PRN)
- Fimbrial agglutinogens (FIM)

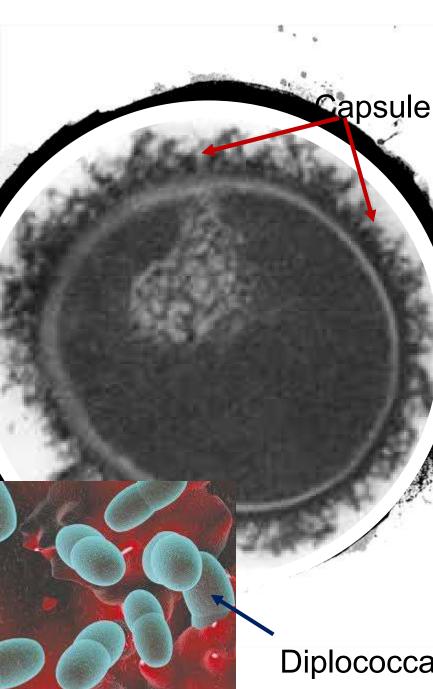
Antigens are "Active ingredients"

- Direct targets of immune response
- Goal
 - Induce protective immune response similar to postdisease without vaccine getting disease
- Epidemiology and immunology studies
 - To suggest best pathogen component
 - Best at inducing protective responses
- Screened in vitro and in animals
 - Minimize reactogenicity
- New processes
 - Computer predicted structures
 - Computer modelling immune responses

Sources of Vaccine Antigens

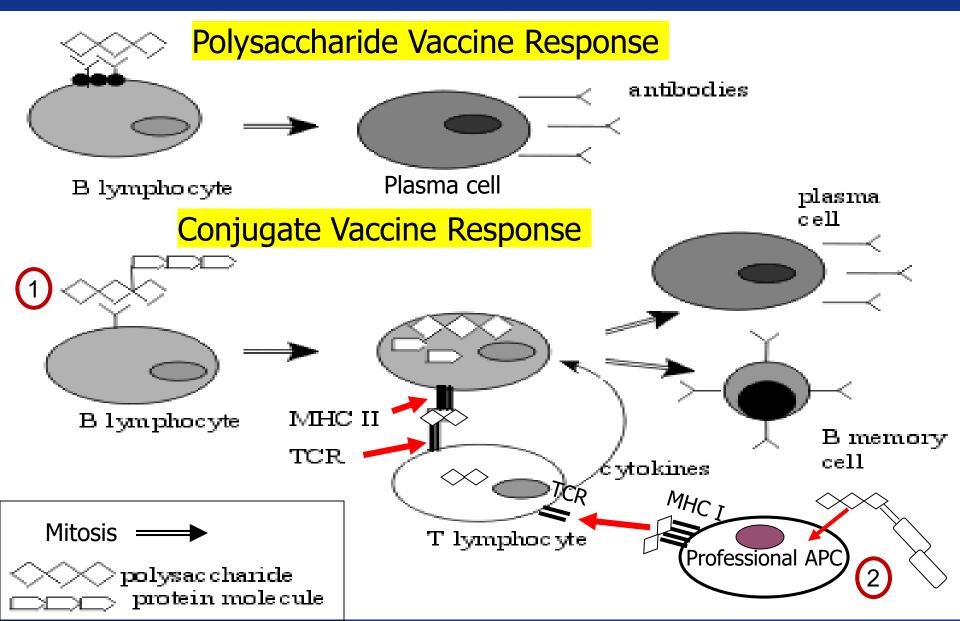
- 1. Whole weakened live or inactivated viruses
 - MMR and varicella vaccines, IPV
 - Current influenza vaccines LAIV and IPV
- 2. Detoxified toxins
 - Diphtheria and tetanus toxoids
- 3. Purified parts of wild type viruses or bacteria
 - Polysaccharide pneumococcal capsule (PPV23 or PCV13)
 - Pertussis component vaccines
- 4. Virus like particles (VLP)
 - HPV vaccines
- 5. Vector produced components
 - Baculovirus produced influenza vaccine
- 6. Genetically modified viruses
 - Experimental RSV and influenza vaccines
- New assembled epitopes, 3D printing

Inactivated Virus or Detoxified Toxin

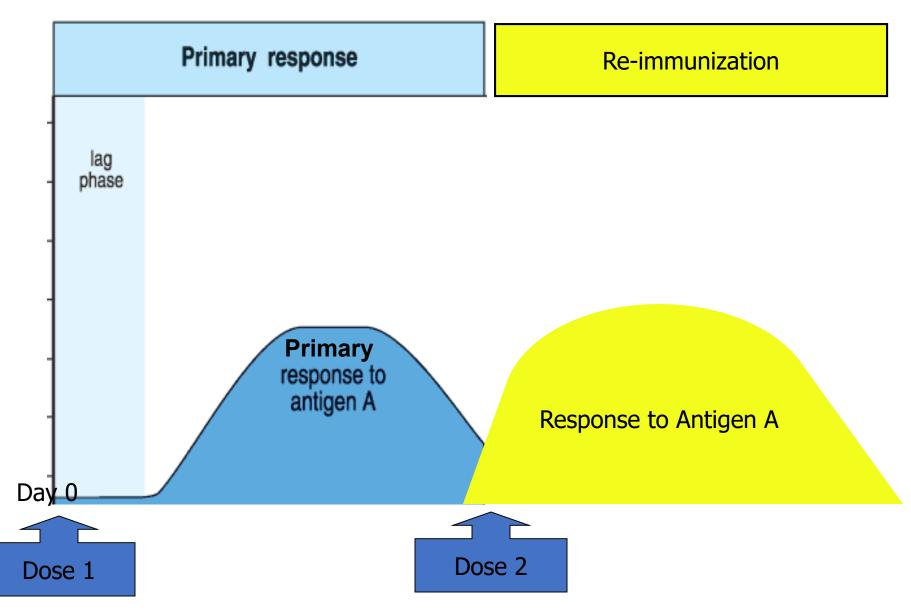

- Examples: IPV, Hep A, IIV, and rabies vaccines
- Usually modified via chemical treatment
- Antigens still recognized and presented by immune system nearly the same as if on living virus or native toxins by the body
- Pros:
 - Killed viruses or toxoids cannot possibly cause infection
 - Viable options for those with weakened immune systems
- Cons:
 - Usually need multiple doses for reasonably durable protection

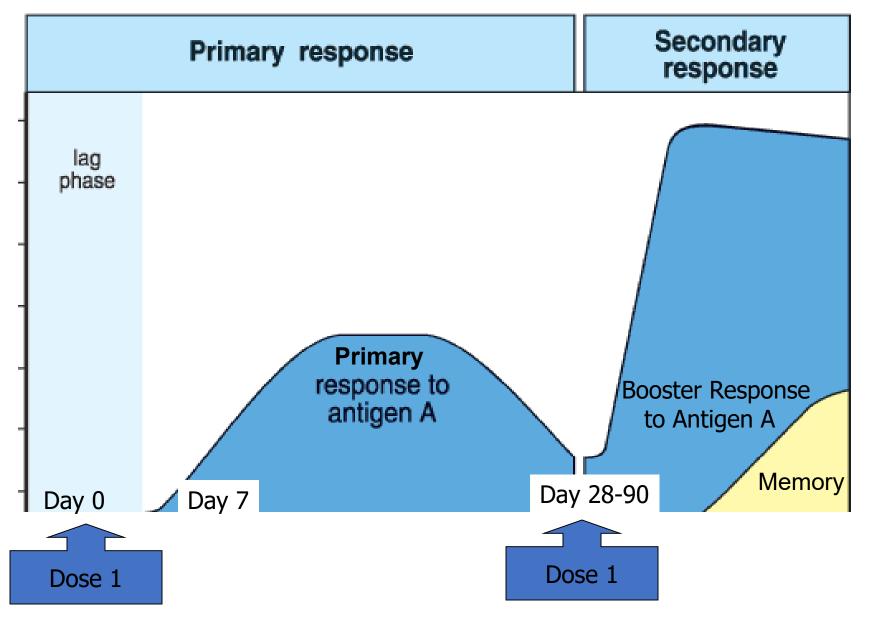
Weakened vs Wild Type Virus

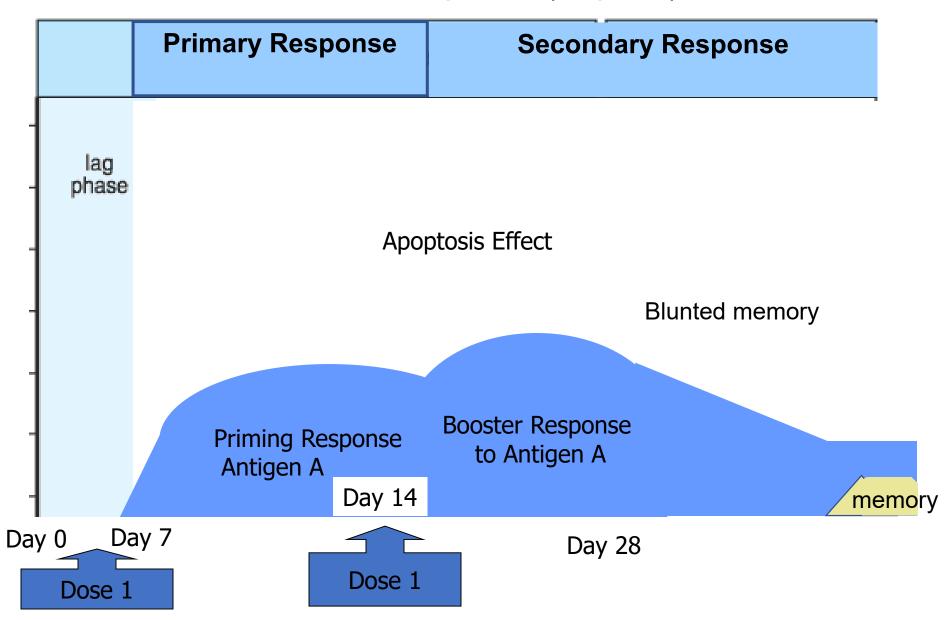
- In disease, wild type viruses multiply 1000s times
- Weakened viruses reproduce poorly once in host
 - Measles, mumps, rubella, rotavirus, VZV vaccines
- Vaccine strains usually multiply < 20 times
 - Sufficient to induce responses
 - Cell-mediated and antibody
- Whole virus more likely decades of immunity
 - Longer than most killed or sub-unit vaccines
 - Caveat for live vaccines :
 - Usually not for those with weakened immune systems


Polysaccharide **Capsule of** Pneumococcus

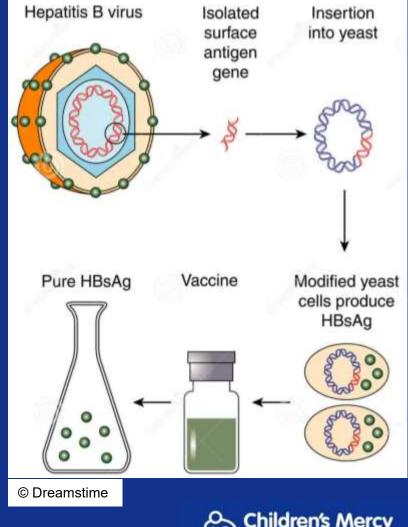
- Bulk cultures
 - Billions of organisms
 - Each serotype of interest
- Capsule stripped
 - Each serotype
- Purified unconjugated capsular antigen is B-cell dependent
 - Not boostable short lived
 - PPsP23
- Conjugated protein/peptide
 - Makes it T-cell dependent antigen
 - Boostable more durable
 - PCV7, PCV13, PCV20


Diplococcal form

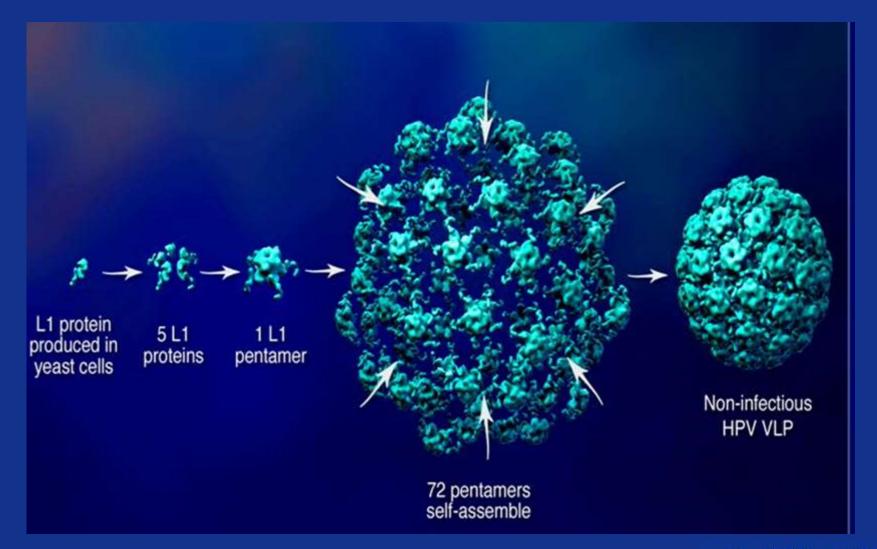

Why Conjugate an Antigen?


Antibody response After Re-Immunization T-cell Independent Response (Polysaccharide)

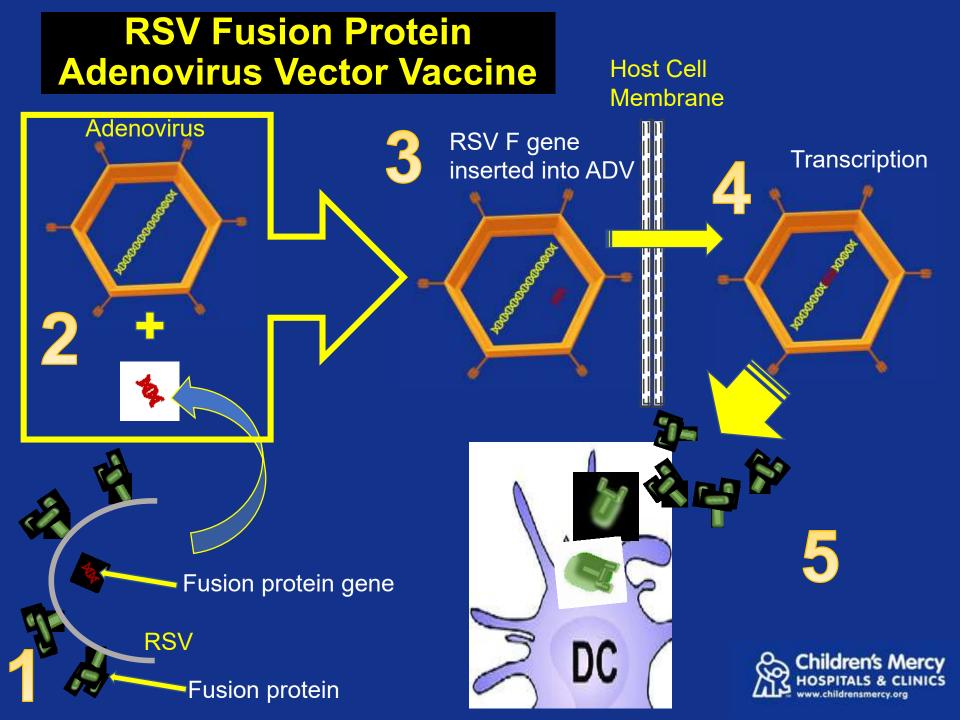
Antibody Response to Booster Vaccine: T-cell Dependent Response (Peptide)

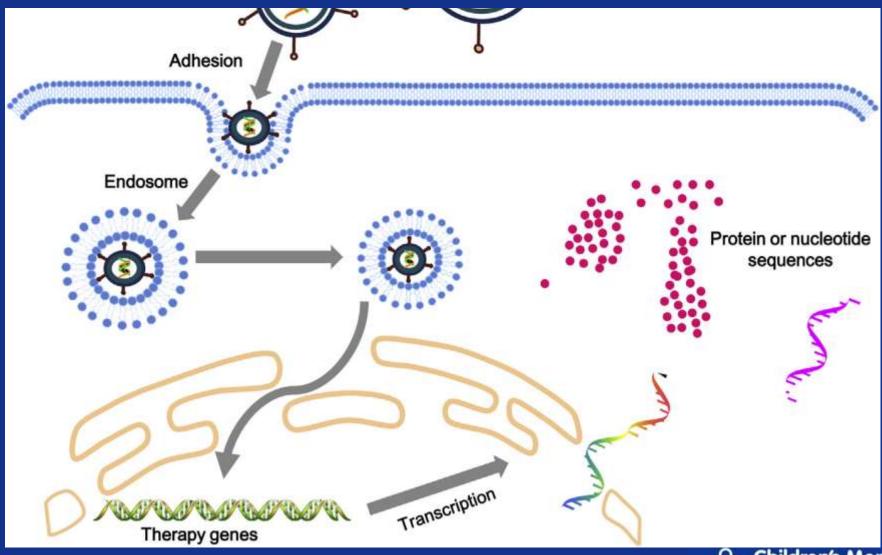


Caution: Antibody Response to Too Early Booster Dose: T-cell mediated Response (Peptide)



Purified or Genetically Engineered Ag


- Pathogen component or sub-components
- Examples: Hep B, pertussis, or HPV
- Response to a particular antigen is known target of protective immune responses
- Pros:
 - Generally less reactogenic
 - No chance to cause targeted infection
 - OK with weakened immunity
- Cons:
 - Need multiple doses
 - Often need adjuvants for durable protection
 - Extra steps in production adds expense


HPV Vaccine Imitates Infectious Virion

Viral vector Vaccine Post Administration

What's an Epitope?

- Ideally vaccine-induced immune responses :
 - Targeted to be as selective and specific as possible
 - Less non-targeted material means less likely to induce damaging responses
- Epitope is the small precise sequence within an antigen that is the specific target of immune response
 - Sometimes as little as 5 amino acids
 - Antibody may have different targets than T-cells
 - Different antibodies induced by same antigen may target different epitopes - some neutralizing and some not
- Immune "geography"
 - Pathogen is a city block
 - Antigen is a building
 - Epitope is a section of the building

Job of Immune System: Deconstruct pathogen to get the Correct Target

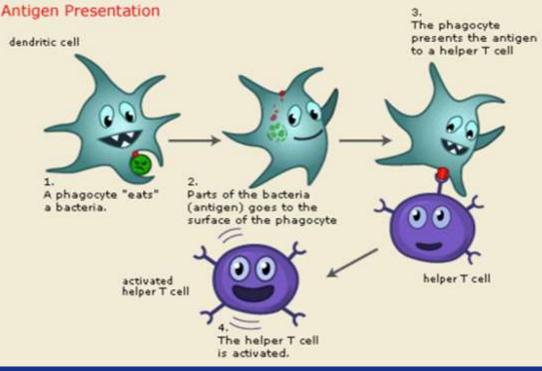
- Break city block into buildings
 - May use non-immune body functions
 - Apoptosis rupture infected cells
 - Enzymes digest proteins, lipids and polysaccharides
- Antigen presenting cells (APC)
 - Ingest pathogen or pathogen parts antigens
 - Shuttle pathogen parts to correct intracellular compartment
- Break building into parts (epitopes)
 - Lysosomes, endosomes, etc
 - Like micro septic tanks
 - Make ready for adaptive immune recognition

Epitope Simile – mutation effect

Adjuvants

Non antigen substances purposefully added to vaccines

- Possible benefits
 - Increase host responses
 - Decrease amount of antigen needed
 - Decrease number of doses
- Possible detriments
 - May increase reactogenicity
 - May trigger unwanted immune response
 - Mya reduce public acceptance of vaccine


Wack A, Rappuoli R. *Curr. Opin. Immunol*.17(4), 411–418 (2005). O'Hagan DT, Valiante NM. *Nat. Rev. Drug Discov.* 2(9), 727–735 (2003). https://www.fda.gov/syn/html/ucm187810

Adjuvants

Kono H, Rock KL. *Nat. Rev. Immunol.*8(4), 279–289 (2008). McKee AS, et al *BMC Biol.* 8, 37 (2010).

 Persistent antigen depots

- Trigger innate immune responses that groom adaptive immune responses
 - Engage pathogen-recognition receptors, TLRs
 - Increase antigen presentation efficiency
 - Accelerate and amplify
 - CD4⁺ T-helper (Th) lymphocyte responses (Th1 or Th2)
 - CD8⁺ CTL responses
 - Can alter type of antibody that is produced

FDA Approved Adjuvant Types

- <u>Aluminum salts</u> e.g. Hydroxide
- Liposomes micro bags of fatty molecules
 - Imitate cell membranes present antigen
 - 1. Monophoshoryl lipid A (MPL)
 - 2. Squalene oil-in-water emulsion
 - MF59 (Fluad[®] vaccine > 65yo)
 - 3. QS-21 (Shingrix® with AS01B)
 - 4. ASO4 (Cervarix® w MPL + AI-OH)
 - No longer marketed
- Toll like receptor (TLR) agonists
 - Engage TLRs specifically to boost Ag presentation
 - Induce cytokines that facilitate T-cell "learning"
 - CpG 1018 in adjuvanted recombinant Hep B vaccine
 - (Heplisave-B®)

Aluminum – Normal Origins?

- 3rd most common element in nature
 - 0.1-0.4% absorbed from GI tract
 - Citrate in diet increased absorption
 - Concentrated in tea, grasses, antacids
 - Cereals, nuts, dairy products, baby formulas, honey
- Air
 - 0.005–0.18 μg/m³ (rural); 0.4–8.0 μg/m³ (urban)
 - 2% absorption rate
 - Child averages 2 cubic meter air exchange /day
- Soil 7-100 g/kg
- Surface Water <0.1 mg/L

Normal Levels of Aluminum

Total body burden in healthy person = 30–50 mg

- ~50% in skeleton and 25% in lungs
- Levels in bone tissue = 5-10 mg/kg
 - Healthy 10 kg child has ~75mg in whole body
- Serum normally has 1 to 3 μ g/L
 - Healthy 10 kg child has ~100ug in serum
- Daily intake ave = 7-9 mg/day
- Daily absorption = 7-12 mcg absorbed
- Renal excretion ~95%
 - ½ life ~100 days

Adjuvanted vs Non-Adjuvanted Influenza Vaccine: Antibody in Peds

- Vaccine #1 adjuvanted, N=464
 - 1.875 µg HA in GSK AS03B split-virus
- Vaccine #2 non-adjuvanted, N=469
 - 7.5 µg HA in Baxter whole-virus vaccine

•	After 2 doses	% Seroconversion		
		<u>< 3YO</u>	<u>>3YO</u>	
	#1 Vaccine	98.2	99.1	
	#2 Vaccine	80.1	95.9	
		P<0.001	P=0.03	

Rates of 1:40 HAI antibody were similarly superior in #1 vs #2, P<0.001

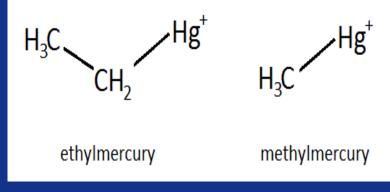
Waddington C, et al. BMJ 2010. DOI: 10.1136/bmj.c2649

Aluminum- Infant Vaccines vs Diet

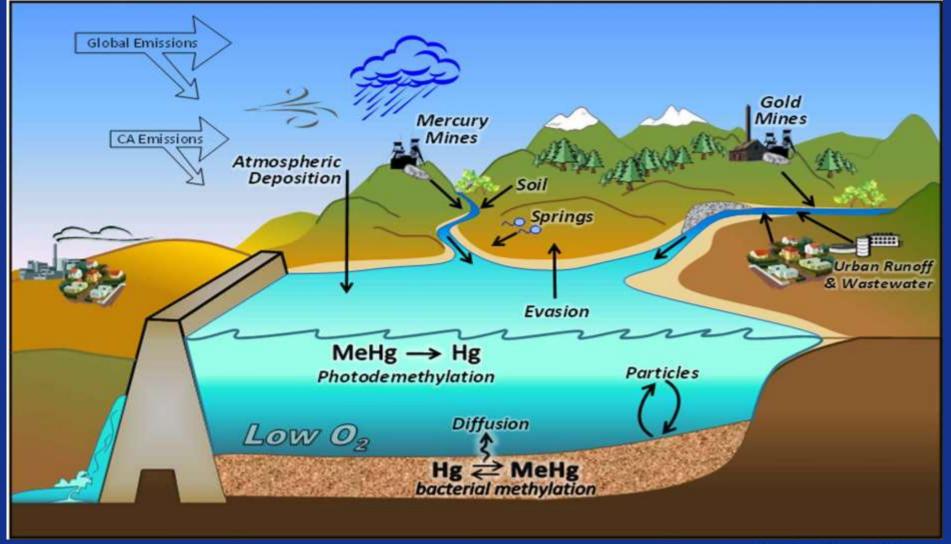
- In 1st 6mos of life
 - Vaccine burden* 4.4mg
 Breast-feeding ~7 mg
 Cow milk based formulas ~38 mg
 - Soy formula = ~117 mg
 - Absorbed from regular diet ~ 2 mg
- Aluminum in any given dose of vaccine
 - No rise in base level in blood
 - Even immediately after an injection
 - * Hep A, Hep B, DT-containing, Hib, and PCV vaccines

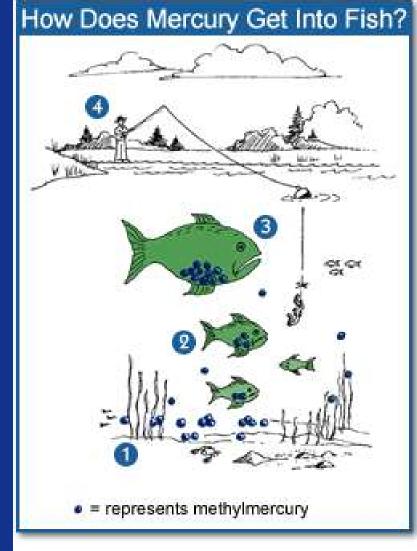
1. Keith et al. Aluminum toxicokinetics regarding infant diet and vaccinations. Vaccine. 2002;20:S13-S17. 2. https://www.publichealth.org/public-awareness/understanding-vaccines/goes-vaccine/

Preservatives - In some vaccines

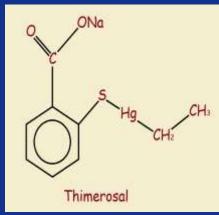

- Prevent bacterial or fungal contamination
- History:
 - FDA required since 1930s after incidents in early 20th century
 - Multi-dose vials inadvertently contaminated
 - 1916 contaminated typhoid vaccine
 - 4 children died, 26 local abscesses, and 68 severe systemic *S aureus* infections
- Thimerosal, a mercury-containing preservative
 - Intense scrutiny by U.S. Congress, media and anti-vacciners
 - No longer (since 2001) in any routine pediatric vaccine
 - Exception multi-dose IIV vials
- No evidence that thimerosal ever caused long term sequelae in humans
 - Other than acute hypersensitivity

Forms of Mercury


- Elemental "Quicksilver"
 - Liquid mercury
 - Old thermometers, fulminate, special lights button cell batteries
- Inorganic mercury
 - Hg salts, e.g. O₂ or sulfur
 - Manufacturing other chemicals (antiseptics, fungicides, disinfectants
- Organic mercury
 - Hg combines with carbon forms
 - Mainly 2 forms
 - Methyl mercury fish and diet mostly
 - Ethyl mercury thimerosal


Many Sources of Methyl Mercury

Methyl Mercury


- When elemental mercury interacts carbon in environment
 - High levels can be very toxic
 - Fetus highly susceptible
 - Body has limited ability to break down or eliminate methyl form
 - Natural source fish/shellfish and fish eating animals, but can be in air
 - Pregnant women advised to limit Hg containing fish and shellfish
 - Tuna 5.6 oz can = 0.115 mcg/gm methylmercury
 - Breast milk: = 0.015 mcg/L methylmercury even with normal diet

Ethyl Mercury from Thimerosal

- Byproduct in body of thimerosal not methyl form
- Broken down and excreted from body much more rapidly
 - Much less likely to accumulate to toxic Hg levels or cause harm
- Multidose flu vaccine thimerosal =
 - 0.025 ethyl mercury mcg/gm
- 1990s
 - AAP suggested manufacturers make "safe vaccines safer"
 - Was and still is no evidence that thimerosal caused any harm
 - AAP wanted to be cautious and reduce even unwarranted concerns
- Over 1st 6 months of life, exclusively breastfed infants exposure
 - Even in 1980s breast milk had >2X mercury in all vaccines
 - Now, 15X mercury in breast milk vs 1 influenza multi-dose vaccine dose

Excipients

- Fillers
- Extenders
- Diluents
- Wetting agents
- Solvents
- Emulsifiers
- Flavors
- Coloring agents

Excipients: Many Are Manufacturing By-products

- Antigen sources
 - Laboratory grown viruses or bacteria
 - Some by-products (chemicals and cell components) may remain in the final preps in minute quantities
- Some examples include
 - Antibiotics
 - <u>DNA</u>
 - egg proteins
 - Fetal tissues
 - Formaldehyde
 - Human proteins
 - <u>Yeast</u> proteins

Formaldehyde: Other Side of Story

- Isn't formaldehyde used to embalm bodies? eek!
- Produced naturally in body during
 - Energy related processes
 - Making amino acids
- Other sources
 - Ground water, meat, fish, plants
 - Building materials
 - Preservative in labs
 - Production of many household products
- By-product of vaccine production
 - Inactivate polio virus or detoxify diphtheria toxin
- Most removed during later vaccine production steps
 - Minute quantities remain in some vaccines
- Amount of formaldehyde naturally in body
 - 10X that in any vaccine
 - Not a safety concern

Polyethylene glycol – Antifreeze?

- Antifreeze typically made of ethylene glycol
 - Ethylene glycol is unsafe
- <u>Poly</u>ethylene glycol (PEG)
 - Used in personal care products
 - EXAMPLES: skin creams, toothpaste
 - Amount and form in vaccines is safe
 - <0.02%
- Used to inactivate influenza virus in some influenza vaccines
- Also used during antigen purification in some other vaccines

Stabilizers

- Protect integrity of the active ingredients during manufacture, storage and transport
- Most common are:
 - Gelatin
 - Polysorbate 80 in HPV vaccine
 - Some claim it may cause infertility
 - Note:
 - Polysorbate 80 in use for decades
 - Emulsifier to make ice cream smooth and slow melting
 - 4oz ice cream has ~170,000 mcg polysorbate 80
 - HPV vaccine dose has 50 micrograms

Safe Can Mean Different Things

- Is safe an absolute or relative term?
 - Safe = always harmless vs. safer than alternative
- No vaccine 100% effective or 100% safe
- Vaccine risks and side effects
 - Serious side effects are mostly rare
 - Mild side effects more common but self-limited
- Safety standard higher for vaccines vs drugs
 - Vaccines generally given to many, most of whom are healthy
 - Less risk tolerated from Hib vaccine than Abx that treat the disease

Vaccine Licensure Process

- Years to decades before pharmaceutical companies can actually start providing the vaccine
 - Gaining FDA approval is longest step
 - VZV vaccine took ~11 years after IND granted to be licensed
 - Jokingly called "Never-vax"
- 1st step 1-2 years
 - Show safety and effectiveness in animals
- 2nd step 6 month 2 years
 - Obtain Investigational New Drug (IND) license
 - Allows further study in adults and eventually, children
- 3rd step 5-10 years
 - Conduct clinical trials to document safety and efficacy
 - Phase I through IV trials

But Before That, Vaccine Development Often not at Pharmaceutical Company

- University/small biotech company's research labs
 - Grant funding by government or private foundations
 - Develop reagents and tests to measure success
- Multiple scientists/groups often work separately on similar vaccines
- Accomplishments evaluated by other scientists
 - Presentations at scientific meetings
 - Peer-reviewed papers in journals
- Progress also followed by pharmaceutical company scientists
 - Look for leads on newer or better vaccines
 - Approach those showing progress about expanding research toward product development
- Alternative:
 - University scientist may form company to develop/marketildren's Mercy vaccine

Phase I -Usually <100 Subjects

- Inform FDA of intentions to conduct human trials
- Two scientific goals:
 - 1. Safety
 - 1st adults; then step down in age if appropriate
 - 2. Protective immune response
- Other goals
 - Confirm a test that measures immune correlates of protection/response
 - Consistently (+) in vaccinees and (-) in known vulnerables
 - Manufacturing
 - Are large vaccine batches possible? (Phase II and III)
 - Preservatives or stabilizers needed for reasonable shelf life?
 - Is an adjuvant needed?
- Often takes 1-2 years

Phase II – Multiple 100s of Subjects

Scientific goals

- Determine proper vaccine dose
- Continue to study safety
 - Age stepdown process again if appropriate
- Confirm assays needed for Phase III trials
- Keep FDA up on progress/results
- Manufacturing Goals
 - Confirm factory building in which all product will subsequently be produced
 - Confirm methods for manufacturing, stabilizing, and packaging vaccine
 - Confirm lot consistency
- Takes 2-5 years if things go well

Phase III: 1,000s of Subjects

- Last phase before product licensing request
 - Confirm shelf-life
- Study protocol
 - Power calculation
 - Statistical differences can be detected
 - Rotavirus vaccines needed ~130,000 to R/O rare intussusception
 - Subjects = population as intended for real use
 - Infants for a new infant product
 - Blinded randomization needed
 - FDA endpoints must be reached
- Post- clinical study (1-3 yr)
 - Sponsor data review and product license request
- FDA site visits throughout
 - Added 10-12 mos for further data review
 - Grant licensure
- Ramp up production
- Takes 3-5 years overall usually

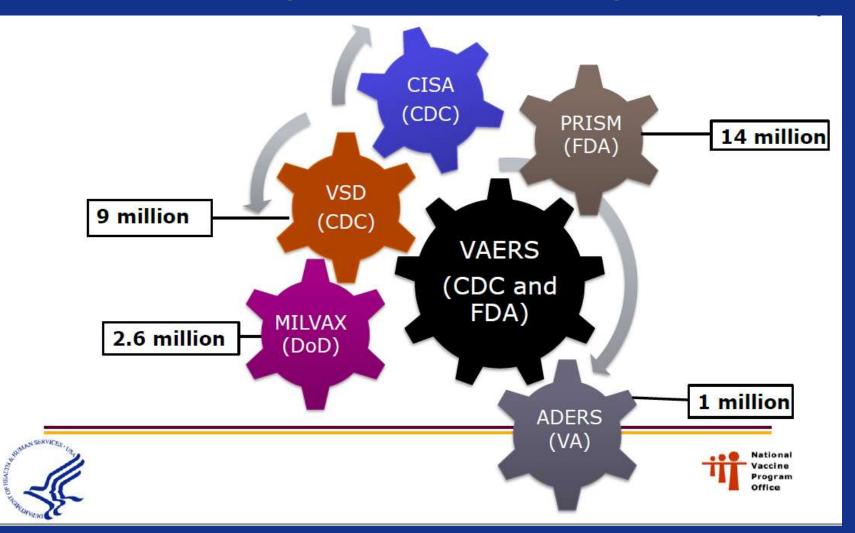
Phase IV studies

- After release to public
 - Seek rare side effects not detected in Phase III trials
 - Safety is continually monitored by CDC at least 4 ways
- Safety questions arising from any source may generate a Phase IV study
- Powered to answer questions that arise
 - 1,000s to 100,000s of subjects
- Sometimes funded by pharmaceutical companies and sometimes federal government
 - Examples MMR and autism, HPV and infertility

Why Post-Marketing Safety Surveillance?

- Rapidly identify new or rare adverse events of clinical importance
- Monitor changes in patterns for known adverse events
- Assess safety in special populations (e.g., pregnant women and children)
- Determine patient risk factors for particular adverse events
- Assess safety of vaccine lots (FDA)

Example of changing practice: Rotashield®



CDC: Vaccine Safety Monitoring

- 1. Selected health departments monitor every vaccinee and report to CDC regularly
- 2. CDC monitors every health department for disease
 - Abnormal disease occurrences after vaccine implemented
 - Are vaccine and abnormal events events?
- 3. Vaccine Adverse Event Reporting System (VAERS)
 - Anyone perceives significant negative AE of vaccine can report
 - CDC continuously monitors for trends in data
 - Generates questions not able to determine causality
- 4. Vaccine Safety DataLink (VSD)
 - 6 million in 6 large HMOs (West Coast)
 - Vaccinees vs non-vaccinees testing safety concerns

Vaccine Safety Surveillance Systems

Vaccine Adverse Event Reporting System (VAERS)

- National spontaneous reporting system for adverse events after US-licensed vaccines
 - In recent years, received around 30,000 U.S. reports annually
 - Accepts reports from healthcare providers, manufacturers and <u>the public</u>
 - Signs/symptoms of adverse event coded and entered into database
- Jointly administered by CDC and FDA
- Authorized by National Childhood Vaccine Injury Act of 1986

Passive system no verification required

Strengths

- National data; accepts reports from anyone
- Rapid signal detection; rare adverse events
- Collects information about vaccine, characteristics of vaccine
- Data available to public

Limitations

- Reporting bias
- Inconsistent data quality and completeness
- Generally cannot assess if vaccine caused an adverse event
- Lack of unvaccinated comparison group
- Pregnancy inconsistently reported

1. VAERS website: http://vaers.hhs.gov

2. Some reports have no adverse event

Office

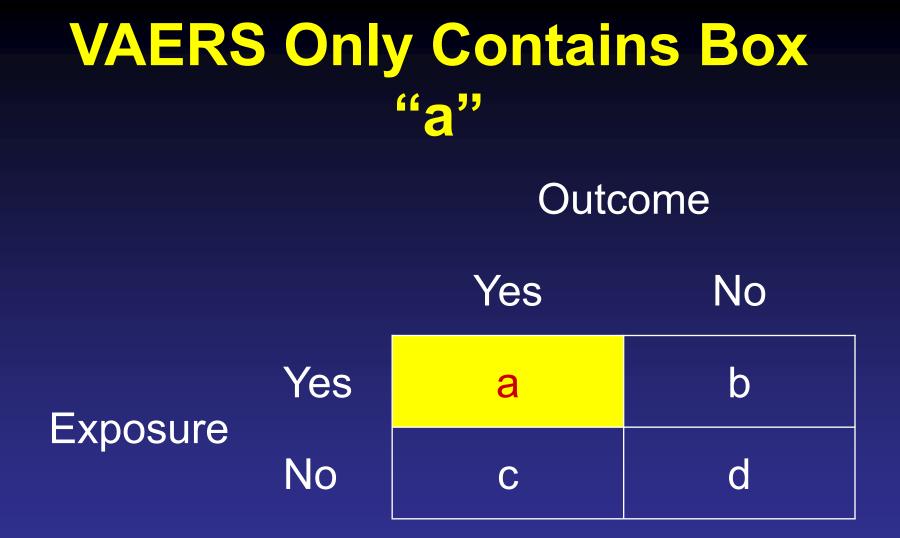
Establishing cause requires information in all four boxes

Illness or Syndrome

	story	Yes	No		
nypothetical	Yes	"95% of kids with autism received MMR"	95% of "normal" kids received MMR		
accination					
	No	"Only 5% of kids with autism did not receive MMR"	Only 5% of "normal" kids did not receive MMR		

Va

VAERS


- Post-marketing surveillance system
- "Mandatory" reporting by HC providers

- Events listed as contraindications

- Events listed in the Reportable Events Table
- Voluntary reporting:
 - Any event by any one
 - Intent:

hypothesis generation not hypothesis testing

Offit, in Marshall. The Vaccine Handbook. Lippincott Williams & Wilkins, 2017

87% of all thimerosal-related VAERS reports in 2002 were made by lawyers

Clinical Immunization Safety Assessment (CISA) Project

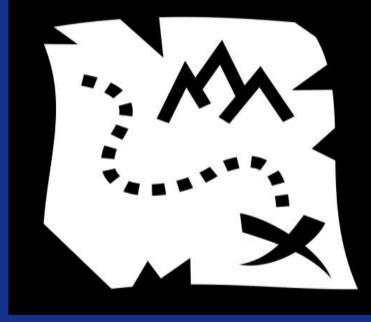
- Collaboration between CDC and 7 medical research centers
- Established by CDC to:
 - Serve as a vaccine safety resource for consultation on clinical vaccine safety issues
 - Develop strategies to assess individuals who may be at increased risk for adverse events following immunization (AEFI)
 - Conduct studies to identify risk factors and preventive strategies for AEFI, particularly in special populations

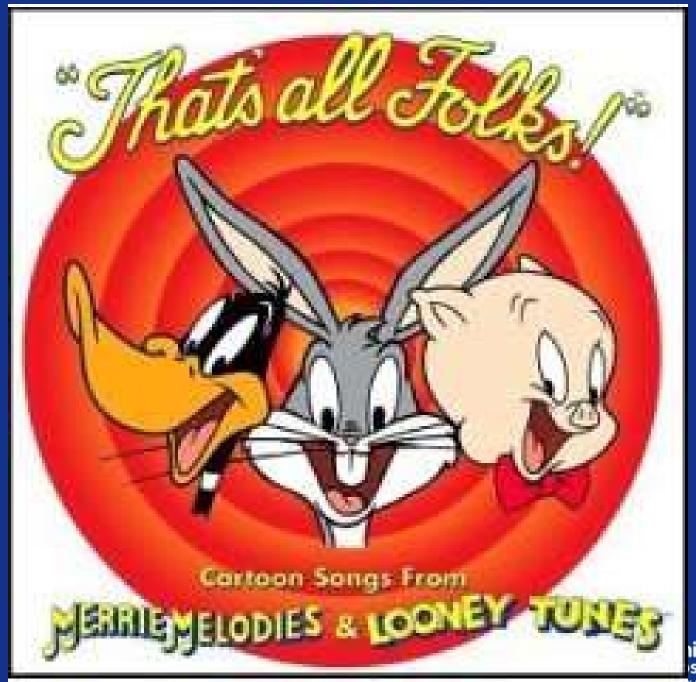
Active; investigations often when unusual event reported directly to CISA or signal in VAERS

2012 Kindergarten Vaccine Data

Goal is 95% for each metric

							MN	IR	DTaP		Varicella	
		(indergarten population		No. (%) surveyed	Type of surve	survey		ses)	4 or 5 doses (%)		2 doses (%)	
Kansa	nsas 38,484		1	8,728 (22.7)	Stratified 2- stage cluster sample		89	.1	89.5		88.3	
Missouri 73,113		3	73,113 (100.0)	Census		95	.2	2 95.3		95.0		
				onmedical	Any exemption Grace						Grace	
		Medical N= (%) R		eligious	Total N= (%)	Per 201 201 N=		Peri 2017 2018 %	-	Period 2 2016– 2017 %	% diff period 1 to period 2	period or prov enroll N= (%)
Kansas	12	25 (0.3)	N= 544		544 (1.4) 669			1.7		1.8	-0.1	NR
МО	0.2	2%	% 2.1%		2.3% 669			1.7		1.8	-0.1	NR


https://www.cdc.gov/mmwr/volumes/67/wr/mm6740a3.htm?s_cid=mm6740a3_e


Road map

• What's in that Vaccine there?

- Antigens / epitopes
- Maybe adjuvant
 - Aluminum
- Minimal preservative use
 - Multi-dose vials IIV
- Excipients, solubilizers
 - Formaldehyde, polyethylene glycol
- Processes for development and safety monitoring
 - 4 Phase to get FDA approval
 - Vaccine safety
 - During 4 phases
 - Post marketing surveillance
 - VAERS, VSDL, CISA
- Local Vaccine Uptake Tidbit

hildren's Mercy SPITALS & CLINICS Muchildrensmercy.org